

SOUTH ASIA REGIONAL INITIATIVE FOR ENERGY COOPERATION AND DEVELOPMENT (SARI-Energy)

Wind Resource Assessment and Mapping for Afghanistan and Pakistan

Dennis Elliott

National Renewable Energy Laboratory Golden, Colorado USA

Benefits of Detailed, Regional Wind Mapping

- Accelerate identification of promising areas for wind prospecting and project development
- Facilitate investment in large-scale wind energy projects
- Support informed decision-making by public and private sectors
- Accelerate the wind project deployment process

NREL's High-Resolution Wind Mapping Approach

- Computerized mapping approach using Geographical Information System (GIS) software (ArcInfo[®] and ArcView[®])
- Designed for regional wind mapping (not micrositing)
- Combination of numerical, empirical and analytical methods
- Does not depend on high-quality surface wind data (but it helps)
- Produces 1 km² or finer wind power maps

NREL's High Resolution Wind Mapping and Validation Projects

High-resolution (1 km² or finer) regional or national wind resource maps have been produced or are in progress for:

Afghanistan Armenia Belize Chile - specific areas China - specific areas

Cuba Dominican Republic El Salvador Ghana Guatemala Honduras Indonesia - specific areas Maldives Mexico - specific areas Mongolia Nicaragua Pakistan Philippines Russia - specific areas Sri Lanka United States - specific areas

U.S. Department of Energy National Renewable Energy Laboratory

Afghanistan and Pakistan Wind Mapping Project Responsibilities

NREL

- project coordination
- data collection and analysis
- review and validation of preliminary wind maps from numerical modeling
- final map development and resource characterization
- documentation
- 3TIER Environmental Forecast Group (subcontractor to NREL)
 - numerical modeling to produce preliminary wind map estimates
- Country Organizations
 - collection of data from in-country sources
 - data sent to NREL for review and use in the assessment

Major Global Data Sets used by NREL for Wind Resource Assessment

Data Set	Type of Information	Source	Period of Record
Surface Station	Surface observations more than	NOAA/NCDC	Variable up to
Data	20000 stations		2006
Upper Air Station	Rawinsonde and pibal	NCAR	1973 - 2005
Data	observations at 1800 stations		
Satellite -derived	10-m ocean wind speeds gridded	NASA/JPL	1988 - 2006
Ocean Wind Data	to 0.25 deg		
Marine Climatic	Gridded (1.0 deg) statistics of	NOAA/NCDC	1854 - 1969
Atlas of the World	historical ship wind observations		
Reanalysis Upper	Model -derived gridde d (~200km)	NCAR	1958 - 2005
Air Data	upper air data		
Global Upper Air	Model -derived gridded (2.5 deg)	NOAA/NCDC	1980 - 1991
Climatic Atlas	upper air statistics		
Digital Geographic	Political, hydrography, etc.	ESRI	
Data			
Digital Terrain Data	Elevation – 1 km resolut ion	USGS/EROS	
Digital Land Cover	Land use/cover and tree cover	NASA/USGS	
Data	density - 0.5 km resolution		

Numerical Modeling Method Afghanistan and Pakistan Wind Mapping

Model Design and Outputs

- Modeling system created by 3TIER (U.S. company based in Seattle, WA)
- A numerical weather model (WRF) coupled to a wind flow model (CALMET) and global weather, topographical, and land cover data
- NCEP/NCAR Reanalysis (200-km grid) most important global weather input for WRF
- WRF simulates weather conditions (including winds) over 365 days selected from a 15-year period
- WRF simulations to 2.5 km and CALMET simulations to 1 km
- Model output grids provided to NREL for review and improvement with empirical and analytical methods

Data Analysis for Assessment and Validation – Surface, Upper-Air, Reanalysis, and Satellite Ocean Data

Recent Wind Measurements in Pakistan

 Wind measurement data from 47 towers in southern Pakistan are being analyzed for the assessment.

Key Deliverables Afghanistan and Pakistan Wind Mapping

- High resolution annual wind power maps, with documentation, for distribution:
 - estimates for 50-m height above ground
 - horizontal spatial resolution: 1-km grid
- Electronic data sets, including
 - the modified and raw gridded map data in GIS format
 - other products including summaries of processed data from available wind measurement stations
- Presentation of project results to country partners and stakeholders from throughout the region

Afghanistan's Wind Resources Major Areas

- Major wind resource areas
 - Western Afghanistan especially
 - Northwestern Nimroz
 - Western Farah
 - Western Herat
 - Northeastern areas especially
 - Eastern Balkh
 - Northern Takhar
 - Wind corridor areas including
 - Near Jabalsaraj, Sarobi, and Tirgari in eastern Afghanistan
 - Near Qalat, Gadamsar, Walakhor, Golestan, and Gorzanak in central/southern Afghanistan
 - Elevated mountain summits and ridge crests especially in northern and eastern Afghanistan

AFGHANISTAN - WIND ELECTRIC POTENTIAL

Good-to-Excellent Wind Resource at 50 m (Utility Scale)

Wind	Wind	Wind	Wind	Land	Percent	Total
Resource Utility	Class	Power W/m ²	Speed m/s	Area km²	Windy Land	Capacity Installed
Scale						MW
Good	4	400 - 500	6.8 - 7.3	15,193	2.4	75,970
Excellent	5	500 - 600	7.3 – 7.7	6,633	1.0	33,160
Excellent	6	600 - 800	7.7 – 8.5	6,615	1.0	33,100
Excellent	7	> 800	> 8.5	3,169	0.5	15,800
Total				31,611	4.9	158,100

Assumptions

Installed capacity per km² = 5 MW

Total land area of Afghanistan = 645,810 km²

NREL's SARI-Energy Activities

Conclusions for Afghanistan Wind Mapping

- Advanced modeling and analysis techniques employed to produce detailed wind resource maps of Afghanistan
- High resolution wind maps and assessment information
 - Useful to identify best prospective areas and screen out less promising areas, minimizing cost and time of prospecting
 - Does not eliminate the need for on-site wind measurement.
- Windy land area and theoretical wind potential estimates
 - Class 4+ (good-to-excellent for utility-scale applications)
 - 31,600 sq km, almost 5% of Afghanistan's total land area (650,000 sq km)
 - 158,000 MW of potential installed wind capacity (assumes 5 MW/sq km)
 - Good potential for many wind/diesel and off-grid applications
 - Almost 12% of Afghanistan's land area has Class 3 or better wind resource

Pakistan's Wind Resources Major Areas

- Major wind resource areas
 - Southeastern Pakistan especially
 - · Hyderabad to Gharo region in southern Indus Valley
 - Coastal areas south of Karachi
 - Hills and ridges between Karachi and Hyderabad
 - Northern Indus Valley especially
 - · Hills and ridges in northern Punjab
 - · Ridges and wind corridors near Mardan and Islamabad
 - Southwestern Pakistan especially
 - · Near Nokkundi and hills and ridges in the Chagai area
 - Makran area hills and ridges
 - Central Pakistan especially
 - · Wind corridors and ridges near Quetta
 - · Hills near Gendari
 - Elevated mountain summits and ridge crests especially in northern Pakistan

PAKISTAN - WIND ELECTRIC POTENTIAL

Good-to-Excellent Wind Resource at 50 m (Utility Scale)

Wind Resource Utility Scale	Wind Class	Wind Power W/m ²	Wind Speed m/s	Land Area km ²	Percent Windy Land	Total Capacity Installed MW
Good	4	400 - 500	6.9 - 7.4	18,106	2.1	90,530
Excellent	5	500 - 600	7.4 – 7.8	5,218	0.6	26,090
Excellent	6	600 - 800	7.8 – 8.6	2,495	0.3	12,480
Excellent	7	> 800	> 8.6	543	0.1	2,720
Total				26,362	3.0	131,800

Assumptions

Installed capacity per km² = 5 MW

Total land area of Pakistan = 877,525 km²

Only land area included in calculations

NREL's SARI-Energy Activities

Conclusions for Pakistan Wind Mapping

- Advanced modeling and analysis techniques employed to produce detailed wind resource maps of Pakistan
- High resolution wind maps and assessment information
 - Useful to identify best prospective areas and screen out less promising areas, minimizing cost and time of prospecting
 - Does not eliminate the need for on-site wind measurement.
- Windy land area and theoretical wind potential estimates
 - Class 4+ (good-to-excellent for utility-scale applications)
 - 26,400 sq km, about 3% of Pakistan's total land area (800,000 sq km)
 - 132,000 MW of potential installed wind capacity (assumes 5 MW/sq km)
 - Good potential for many wind/diesel and off-grid applications
 - Almost 9% of Pakistan's land area has Class 3 or better wind resource